Limitations of parallel global optimization for large-scale human movement problems.

نویسندگان

  • Byung-Il Koh
  • Jeffrey A Reinbolt
  • Alan D George
  • Raphael T Haftka
  • Benjamin J Fregly
چکیده

Global optimization algorithms (e.g., simulated annealing, genetic, and particle swarm) have been gaining popularity in biomechanics research, in part due to advances in parallel computing. To date, such algorithms have only been applied to small- or medium-scale optimization problems (<100 design variables). This study evaluates the applicability of a parallel particle swarm global optimization algorithm to large-scale human movement problems. The evaluation was performed using two large-scale (660 design variables) optimization problems that utilized a dynamic, 27 degree-of-freedom, full-body gait model to predict new gait motions from a nominal gait motion. Both cost functions minimized a quantity that reduced the external knee adduction torque. The first one minimized footpath errors corresponding to an increased toe out angle of 15 degrees, while the second one minimized the knee adduction torque directly without changing the footpath. Constraints on allowable changes in trunk orientation, joint angles, joint torques, centers of pressure, and ground reactions were handled using a penalty method. For both problems, a single run with a gradient-based nonlinear least squares algorithm found a significantly better solution than did 10 runs with the global particle swarm algorithm. Due to the penalty terms, the physically realistic gradient-based solutions were located within a narrow "channel" in design space that was difficult to enter without gradient information. Researchers should exercise caution when extrapolating the performance of parallel global optimizers to human movement problems with hundreds of design variables, especially when penalty terms are included in the cost function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A limited memory adaptive trust-region approach for large-scale unconstrained optimization

This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...

متن کامل

Solving the Problem of Scheduling Unrelated Parallel Machines with Limited Access to Jobs

Nowadays, by successful application of on time production concept in other concepts like production management and storage, the need to complete the processing of jobs in their delivery time is considered a key issue in industrial environments. Unrelated parallel machines scheduling is a general mood of classic problems of parallel machines. In some of the applications of unrelated parallel mac...

متن کامل

Solving the Problem of Scheduling Unrelated Parallel Machines with Limited Access to Jobs

Nowadays, by successful application of on time production concept in other concepts like production management and storage, the need to complete the processing of jobs in their delivery time is considered a key issue in industrial environments. Unrelated parallel machines scheduling is a general mood of classic problems of parallel machines. In some of the applications of unrelated parallel mac...

متن کامل

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

A New Lower Bound for Flexible Flow Shop Problem with Unrelated Parallel Machines

Flexible flow shop scheduling problem (FFS) with unrelated parallel machines contains sequencing in flow shop where, at any stage, there exists one or more processors. The objective consists of minimizing the maximum completion time. Because of NP-completeness of FFS problem, it is necessary to use heuristics method to address problems of moderate to large scale problem. Therefore, for assessme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical engineering & physics

دوره 31 5  شماره 

صفحات  -

تاریخ انتشار 2009